UCID- 20526

CIRCULATION COPY

SUBJECT TO RECALL
IN TWO WEEKS

TEXT COMPRESSION USING WORD TOKENIZATION

Gary Long
Ira Morrison
David Barnett

September 11, 1985

This Is an informal repart intended primarily for internal or limited external distribution. The
opinions and conclusions stated are those of the author and may or may not be those of the
Laboratory.

Work performed under the suspices of the U.S. Department of Energy by the Lawrence
Livermore Laboratory under Contract W-7405-Eng-48.




DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor the University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.,
Springfield, VA 22161



TEXT COMPRESSION USING
WORD TOKENIZATION

Gary Long
Ira Morrison
David Barnett

Computations Department
Lawrence Livermore National Laboratory
University of cCalifornia
Livermore, California

August 30, 1985
ABSTRACT

This document describes a text compression scheme, its
associated algorithms, and their implementation in the 'C!
programming language. The algorithms described only work for
textual data. The current code and associated data dictionary
are slanted toward general English language text such as
technical reports and/or newspaper articles. With minor
modifications to the code and by using special purpose
dictionaries, the same algorithms could be used to compress
special purpose text files such as compiler source 1listings.
We achieve compression ratios of better than fifty percent and
the routines are very fast. Typical applications produce
significant reduction in data storage space and effectively
double the transmission rate of documents between computers.






Text Compression Using Word Tokenization

l. INTRODUCTION

The rapid proliferation of large textual databases and the con-
comitant need to rapidly transmit textual data between computers
prompted a reevaluation of existing data compression schemes. The
compression schemes commonly used in the past have been based largely
on information theoretic concepts such as minimizing redundancy, with
little dependence on the specific content of the data being
compressed. They tended to be small in size but difficult to effi-
ciently implement in software. Since "fast" computer memory of the
type necessary to implement dictionary encoding schemes continues to
become 1less expensive, it seemed reasonable to develop a scheme based
on the statistics of word (type) usage in the English 1language. The
method reported on in this paper was designed by Gary Long and Ira
Morrison and implemented by David Barnett. It is based on a word
tokenization scheme. It uses modest amounts of memory (53K bytes of
data and 14K bytes of code on an IBM PC, and 55K bytes of data and 28K
bytes of code on a MicroVAX I) and the compression ratio is greater
then 50% for English language text. For example, this paper requires
39K bytes of storage without compression. 1In compressed form, it only
requires 18K bytes. The 50% compression ratio provides an effective

doubling of the baud rate when used in data communications applica-
tions.

The code itself is written in 'C', and excerpts from the actual
code are included.

2. ALGORITHM OVERVIEW

The algorithms incorporate two different methods to compact text.
One is encoding of English words, that is, replacing each word with a
number, where the number is an index to that word in a dictionary. The
other is based on assumptions about punctuation and white space (e.g.
tabs, carriage returns, spaces, etc.) which makes it possible to elim-

inate most spaces from a document being compressed. These two methods
are outlined below.

2.1. Tokenization

The current implementation of this compression method uses a dic-
tionary of the eight thousand (more precisely 8K) most common words in
the English language. In addition, there is an auxiliary dictionary



Text Compression Using Word Tokenization

which contains the thirty-two most common words. The words in the aux-
iliary dictionary are represented by one byte (8 bits). The other 8K
words are compressed into a two byte representation. (For information
on the restriction of the number of available bits, see Appendix A.)

The algorithm not only uses literal word lookup but also applies
tests for prefixes, suffixes, and accompanying root modification in
order to compact word variations not contained literally in the dic-
tionary. If a word variant is found in this manner, the prefix and/or
suffix is encoded in one or more extra bytes which follow the encoded
dictionary index of the root word. If a word or variant is not found
in the dictionary, it is not encoded but is placed 1literally (i.e.
character by character) in the compressed document.

Finally, the program also checks the case of the characters mak-
ing up a word, and can encode that information. The recognized cases
are all capitals, all lower case, and first letter capitalized. If a
word is capitalized in any other way it can not be compressed. Nothing
is ever compressed if it can not be identically decompressed later.

2.2. Punctuation and White Space

The algorithm also attempts to compact information concerning
punctuation. It does this by making assumptions about each punctuation
mark. Each punctuation mark is specifically tagged as either having a
space or none before and/or after it. If a particular punctuation
mark is tagged as being preceded and/or followed by a space and it
actually is, then that space need not be included in a compressed
document. However, if it is not accompanied by an expected space, a
special character must be included in the compacted text to indicate
the exception. Hence, a punctuation mark must be preceded or followed
by a space more than half the time in order for effective compression
to occur. If a space is not assumed before or after a punctuation
mark and there is one, then it is just carried literally. For example,
the percent sign (%) is tagged as having no space before it and one

after it, so the pattern "a% b" would be compressed to "a%b" and
"a % b" to "a %b".

Additionally, it is assumed that every word is followed by a

space. Thus, spaces between words are not included in a compressed
document (unless one falls between two words which could not be token-
ized). The exception to this feature occurs when a word is followed

by a punctuation mark not expected to be preceded by a space. Punctua-
tion assumptions always have precedence over the "space after" assump-
tion. Exceptions are noted in the compression.



Text Compression Using Word Tokenization

One last compression effort is made by assuming that some punc-
tuation marks not only are followed by a space but also end a sen-
tence. This means that if the word following them begins with a capi-

tal letter, it is unnecessary to include this capitalization attribute
in the compressed file.

2.3. Example

The following illustrates the gist of this scheme. Figure 1 con-
tains a sentence, and below the sentence an indication of how it is
compressed. The number of characters with a space underneath them is
the number of saved characters, since each space represents a byte not
required in the compressed sentence. In Figure 1 assume that an (*)
represents a word encoded 1in one byte. A (##) represents a word
encoded into two bytes. An (@) indicates the presence of an extra byte
containing affix or capitalization information. A (-) indicates an
uncompressed character. The original sentence containing 53 charac-
ters is compressed into one containing only 26 characters, yielding
51% compression. In reality, the common words "simply" and "amazing"
could be in the dictionary literally, and so not require an extra byte
to indicate the suffix. Common names 1like "Smith" could also be
included in the dictionary. If "This" were preceded by an end of sen-
tence marker rather than being the first word in a document, it would
not have needed its extra capitalization recording byte. If these
latter assumptions were all correct, the result would be an overall
60% compression rate. In our implementation, the compression ratio
falls somewhere between 50% and 60%. The average in tests to date is
about 55% (i.e. better than a factor of two).

3. APPLICATIONS

There are many applications for a compression method such as this
one. Its speed is much faster than that of more general binary compac-
tion algorithms. Since it is word oriented it can be used as a filter,

This, Mr. Smith, is a simply amazing sample sentence.
##e - --= ——-=eo * - f#4e ##he ## #4 -

FIGURE 1



Text Compression Using Word Tokenization

uncompacting one word at a time and then passing it back to a calling

routine which need not know that the word was ever compressed. The
function

funcompact (source, "%s", stringvar)
can execute almost as quickly as

fscanf (source,"%s",stringvar).

3.1. Serial communications

The greatest realization of the advantages of this compression
algorithm is achieved when it is used in conjunction with communica-
tions across a modem or other serial adapter. Using an intelligent
terminal, one can transmit documents in compressed form, and have the
recipient decompress them. This has the affect of doubling the baud
rate. We can decompress words much more rapidly then we can transmit
words at current baud rates. Text oriented services can apply this
method to great advantage, particularly information retrieval services
which deal exclusively in text transmission. Doubling the effective

transmission rate is extremely noticeable over phone lines which
currently have a maximum transfer rate of 2400 baud.

3.2. Online documentation

Using this method of compression on documentation stored on-line
has the advantage of saving disk space without sacrificing speed of
access. There is a cost to this, however, since more processor time is
required to decompress a file than to merely list it. However, this
is not the case with systems which store documents in unformatted
form, and then format them when they are retrieved. Compared to most
formatting schemes, decompression is faster, and tokenization provides
greater compression. Expensive memory can be saved by storing unfor-

matted documentation offline and only keeping compressed, formatted
documentation online.

|w

.3. Text searching

Built into tokenization are many features which greatly facili-
tate searching text documents for a given word. Since words are com-
pacted into distinct segments: word, capitalization attributes, pre-
fixes and suffixes; much of the work involved in searching is already
taken care of. By first encoding a query word, compressed text of



Text Compression Using Word Tokenization

interest can be searched numerically (for an identical index) rather
than by string comparison. Capitalization and prefix and suffix strip-

ping has already been done. Furthermore, the number of characters to
be searched is greatly reduced.

4. DATA

One feature of this compression scheme is that it can easily be
"tuned" to different environments (this is discussed in more detail
later). Many of the rules, and the dictionaries themselves, are exter-
nal to the compression and decompression routines. That is, the code
itself is not dependent on a specific dictionary or rules, but merely
on a specific data format. Consequently, the effective implementation
of this algorithm is highly dependent on the form of the data.

There are five static data lists used by both the compression and
decompression programs which contain the data which must be shared
between the routines. Since in tokenization it is pointers or indices
which are passed, it is essential that the same lists be used when
compressing and decompressing. Hence, in order to change dictionaries,
either every document must be decompressed using the original diction-
ary and then re-compressed using the new one, or a copy of the old
decompression program must be maintained.

There are three basic categories of lists: the word 1lists, the

prefix and suffix lists, and the character attribute list. These are
detailed below.

4.1. Words

As mentioned before, two separate word lists are maintained. One
is a large dictionary of 8K (8192) words and the other contains the 32
most common words. Whenever an attempt is made to look up a word, the
short 1list is searched first, and if the word is not found the longer
list is searched. The shorter list is maintained for two reasons: it
is quicker to search (a word is more likely to be found in the short
list than in the long list) and it provides a clean method of encoding
words into only one byte. To not transfer words in only one byte
would be a tremendous waste. The most common word in the dictionary
occurs almost 7,000 times more often in documents than the least com-

mon and 100 times more often than the thirty-third most common (see
(11).



Text Compression Using Word Tokenization

The short list is maintained as a simple array of null terminated

character strings in alphabetical order. Words are looked up via a
binary search.

The long list is slightly more complicated. It is stored in
alphabetical order by first letter, then sorted by length within each
group having the same first letter. Finally, each length is put into
alphabetical order. The following words are in the correct order:

ape
apple
apply
applied
addition
boo

baby
bake
badger
bailiff

In order to optimally search this list, another 1list is maintained
which contains pointers (offsets) into this list. If one is attempting
to look up a given word of known length, this list points to where the
search should begin. This header 1list is referenced by an index

corresponding to the length of the word and its first character. The
actual formula is

index=(first_character-'a') * (MAXWORDLENGTH~2)+length-3

where first character is the first character of the word being looked
up, MAXWORDLENGTH is a constant equal to the maximum allowed length of
a word in the dictionary (words longer than MAXWORDLENGTH can not be
in the dictionary so are not searched for), and length is the length
of the word being looked up. If MAXWORDLENGTH equaled 12, the index of
the header pointing to the word “cabbage" would be

(‘c'='a')*(12-2)+(7-3) = 2%10+4 = 24.
This header list is a structure of the type

struct header type (

int offset, /* byte offset into the list for words of this type */
total, /* number of words with this length and first char. */
index: /* of the first word of this length */
}

Offset refers to an actual character offset, so in the earlier example



Text Compression Using Word Tokenization

"apple" would have an offset of 3 and an index of 1, while "ape" would
have an offset and index both of 0. The structure of the header offers
one additional advantage. It is not necessary to carry the first char-
acter and a terminating character for each word. Therefore, the
entire 1list of 8K words is maintained as one long character array,
with no first characters or terminating nulls. Again referring to our
earlier example, this list would look like

char long list="pepplepplypplied..." ;

Since for a given length and first character, one knows the number of
elements (courtesy of the header structure), a binary search can still
be employed. (Note that the offset of "apple" is now 2.)

The memory savings involved in this are tremendous. By eliminat-
ing two characters per word (first character and separator), 16K bytes
are saved; by not implementing it as an array of pointers another 8K
times the pointer 1length is saved (possibly 32K bytes). Using this
scheme, our header table and word list together occupy just 53K bytes.

This is a savings of 12K bytes when compared to conventional access
methods.

4.2. Affixes

Two additional lists (each with two parts) are maintained for
prefixes and suffixes. Each list is divided into two parts. This first
part contains the 16 most common prefixes or suffixes and the second
the additional affixes. Each part of each list is independently put
in alphabetical order. Suffixes are ordered by the last letter of the
suffix. Those prefixes and suffixes in the first part of each list are
those whose index can fit into four bits and thus be carried along
with other information. The others must be tokenized with a dedicated

byte. Each part of each list must be searched separately since they
are ordered independently.

All searches of affix lists must be unary in order to avoid con-
flicts between prefixes such as "un" and "under" or suffixes like "es"
and just plain "s". Both lists are arrays of character strings, with
the length of the affix carried in binary before the actual affix:



Text Compression Using Word Tokenization

char *prefix list[] = {
"\ 0OO04anti",
"\003dis",

"\ 005ultra"
}

Additionally, suffixes carry (in the same byte as the length) informa-
tion on which root-modification rules apply to it. Prefixes and suf-

fixes, like words themselves, are coded on compression as indices into
the appropriate list.

4.3. Character attributes

This final list serves a different purpose than the others in
that it is not used to determine token indices for compression.
Instead, this list contains information on each ASCII character and
the assumptions made about it (i.e., space before or no space before).
It is implemented as an array, and the attributes of a given character
can be referenced as ch_attrib[ascii_value]. Each bit of the value
represented by ch_attrib[ascii_character] indicates the presence or
absence of a given property. These properties are

0) space expected after,

1) space expected before,

2) end of sentence expected,
3) is punctuation,

4) is numeric,

5) is alphabetic,

6) is white space,

7) is binary.

All one need do to determine if a given character contains a certain
attribute is perform a bitwise "AND" between the value of the array
subscripted by that character and the number resulting from setting
only the bit of interest in the attribute. For example, if one wanted

to determine if the period mark (.) was punctuation, and bit 3 indi-
cated punctuation, then

ch_attrib['.'] & 00001000b

would be non-zero since a period is, in fact, punctuation. If a
period were not punctuation, the value would be zero.



Text Compression Using Word Tokenization

Again it is important that this array be identical in both the

compression and decompression routines, lest they make different
assumptions about a character.

5. Compression

|

.l. Overview

Following is a brief description of how the compression part gf
the algorithm works. The program has two distinct stages: one in
which a word is parsed and another in which it is processed. The type

of processing done on a word depends on the type of the characters
making up the word.

5.2. Input

Text is parsed by the program into units termed "words". A word
need not be an actual English word, but merely a contiguous grouping

of characters of the same classification (alphabetic, numeric, white
space or punctuation).

This algorithm is word oriented in the sense that each word is
independently parsed, processed and output before another is accepted.
The following are the character classifications for reading in words:

1) alphabetic characters,
2) numeric characters,

3) punctuation, and

4) white space.

To facilitate the parsing of words, the character attribute array
is used as shown in Figure 2.

5.3. Processing

Once a distinct word is identified, the program attempts to
compress it. The nature of the compression depends on the type of the
word. Each classification and each word are handled independently.
Figure 2 shows how the initial identification of a word and the pro-
cessing of it are integrated. The specific methods of handling each
type of word are outlined below. There is some data which must be
shared between the various "word" handling routines. This is



Text Compression Using Word Tokenization

char *wbegin, *wend /* bounds of current word */
*from, /* source of text to compress */
classify(), /% returns 1 bit set to type of word*/
its_type; /* 1 bit set to type of word */

do { /* begin compressing */
wbegin = wend = from; /* reset boundaries #*/

its _type = classify(*wend); /* get the type */
while(token_type[*++wend] & its_type): /* find word's end */
from = wend; /* set input to start of next "word"*/

switch (its_type) ({
case ALPHABETIC: ...
case NUMBER: ...
case PUNCTUATION: ...
case WHITESPACE: ...

} while(*from !='\n'); /* compress until newline */

FIGURE 2

accomplished via several global binary variables. These variables are

last_skipped -- set if a space was not compressed because it
was assumed,

next _cap -- set if the next word is expected to be capitalized,

space_next -- set if a space is expected next (e.g. following
a word), and

last not in -- set if the last word could not be tokenized.

With the exception of these variables (actually bit fields within a

single byte), each routine can function independent of the rest of the
program.

5.3.1. Alphabetic Strings

Alphabetic strings are assumed to be English words, and every
possible attempt is made to tokenize them. In order to maximize the
chances of a word being tokenized the following procedure is employed,

in the given order, until a match is found. A search is performed
after each step if the step applies to the word:

- 10 -



Text Compression Using Word Tokenization

l. The word is looked for in the short dictionary,
2. Case is made all lower case,
3. Any prefix is stripped,

4. Any suffix is stripped and any prefix is put back on the word,
THE FOLLOWING STEPS ARE PERFORMED ONLY IF THERE WAS A SUFFIX:

5. If there was a prefix it is removed from the word again,
6. Any prefix is restored and the root is modified if possible, and
7. If the root was modified the word is stripped of any prefix.

If a word has still not been found, it is not compressed but placed
literally in the compressed document. Note that for some words, not
every step need be taken. Steps (4) through (7) apply only if the
word has a suffix. Steps (3), (5), and (7) apply only if the word had
a prefix. Hence a word with no prefix or suffix only encounters steps

one and two. An example of the type of word for which multiple
searches would be performed is "Unhappily". It contains a capital "U",
a prefix "un", a suffix "ly" and the "y" in "happy" was changed to
"i". The following suffix transformations are recognized:

l) 'y' to 'i' before 'es', *‘ness' and 'ly',

2) doubled consonant before 'ing', ‘'ed' and 'er’',

3) 'y' to 'i!' in cases other than (1), and finally,
4) final 'e' being dropped.

These rules are checked in the listed order. Note that in some cases
these rules are applied without checking to see that the rules of
English have been correctly followed. (i.e., if a word ends in 'i'
and makes it to step (3), it will automatically be changed to 'y').
This is because the objective of this algorithm is not to be a spel-

ling checker, but to compress words even if they are not spelled
correctly.

5.3.2. Numbers

One special case of numbers 1is currently recognized. Numbers
between 1800 and 2055 are assumed to be years and are compressed as a
year flag followed by an offset (year-1800). These numbers are treated
as if they were tokenized words, while other numbers are handled the
same as untokenized words (i.e., words not found in the dictionary).

_11_



Text Compression Using Word Tokenization

5.3.3. White space

There are two types of white space: actual ASCII spaces; and
tabs, carriage returns, form feeds and the like. Other than actual
spaces, white space can not be eliminated. However, strings contain-
ing four or more repeated, consecutive, non-printing characters are
compressed into a tag byte, a count byte, and the actual character.
Three or fewer repeated characters are passed literally.

Stand alone spaces also can be dealt with. If a space separates
two words (at least one of which must be tokenizable) it can be elim-
inated. If a space occurs before a punctuation mark defined as having
a space before it, it need not be carried. Additionally, if the space

occurs after a mark defined as having a space after it, the space also
need not be passed along.

5.3.4. Punctuation

Single punctuation marks must always be passed 1literally. Four
or more repeated, consecutive punctuation marks are handled in the
same manner as repeated white space. They are compressed into a header
byte, and a count byte followed by the punctuation mark. Punctuation
does affect the compression of the other types of words. Both the
first and last character(s) (they can be the same) of each punctuation
string are analyzed, and flags set accordingly. For example, if a word
ends in a period, the end of sentence flag is set. Or, if a space was
expected, and instead an open parenthesis (which assumes a preceding

space) was found, the punctuation handler outputs the rule override
character.

6. DECOMPRESSION

With few exceptions, decompression is much more straightforward
then compression. Because indices are passed, this part of the program
merely has to recognize and put the affixes in the right place, and
know the assumptions that went into the compression.

The most time consuming aspect of decompression is to locate a
word in the large dictionary given its index (recall that this dic-
tionary is maintained as one 50K byte character string without first
characters or word terminators). Figure 3 shows how this is accom-
plished. The length and first character of a word can be derived from

the index of the member of the header table which refers to that word
by the following formulas:

- 12 -



Text Compression Using Word Tokenization

/*
* The following routine finds the index of the element in the header

* table which refers to the word whose position in the dictionary is
* given by 'dp!

*/
int dp, /* the position of the word of unknown header */
first, /* index of 1lst word pointed to by current header */
guess, * guess for current header subscript */
high, /* upper bound for binary search */
low; /* lower bound for binary search */
extern struct header_ type table[]: /* the header table itself*/

/*

* A binary search is used to determine the header table subscript

* corresponding to the given index:

*/

low=0;

high = TABLESIZE;

while (low <= high) { /* find the header for the index */
guess=(high+low)/2;
first = table(guess].i_index;
if (dp < first) high = guess-1; /* guess is to high */
else if (dp > first) low = guess+l; /* guess is too low */
else { /* GUESS IS CORRECT */

/*

The following loop passes up potentially empty header
records. A header record gives the index for the first
word in a list of words with a given length and first
character but there is no guarantee that there are

actually any words of that length and first character.
*/

while (table[guess].total==NULL) guess++;
high = guess;
break ;

}

}

/* 'high' now contains the subscript of

* the header table member which refers to 'dp!
*/

FIGURE 3

- 13 -



Text Compression Using Word Tokenization

length = (index % MAXWORDLENGTH) + 1

first_character

index/MAXWORDLENGTH + 'a'.
7. ADAPTATIONS

Another feature of this compression scheme is that it is easily
adaptable to many different types of document compression. Without
changing the code, new data (words, affixes, and punctuation attri-
butes) could be integrated into a system by merely re-linking the pro-
grams with the new data. Hence, several versions of the compression
program could be maintained, each for a different application. It
might not be appropriate to expect the same dictionary to be used to
compact technical online documentation and to compact a philosophy
thesis. Because different programming languages use punctuation in
different ways, savings can be maximized by maintaining different ver-

sions of the compression program with different rules for each
language.

- 14 -



Text Compression Using Word ToKkenization

- APPENDIX A -
COMPRESSED DATA FORMAT

Below is the actual format used to tokenize words. Bit zero is

always the least significant bit, and seven is the most significant
bit.

FIRST BYTE OF TOKENIZED WORD

bit description

always 1 to indicate that the word is tokenized

if tokenized to two bytes, 0 if to one

if there are attribute bytes, 0 if there are not

Bits 0 through 4 contain the actual index of the word.
If it is a one byte tokenization, these bits are the
complete index (in binary), otherwise they are the low
order five bits of the index into the 8K dictionary.

orRNMWEUOON
L T el o

SECOND BYTE OF TOKENIZED WORD:

If the word was tokenized as two bytes, this second byte contains

the high order eight bits of the index. The index can be reconstructed
by the following formula:

index = first_byte + second byte<<5
If the word was tokenized into one byte, this byte is omitted.

FIRST ATTRIBUTE BYTE (SECOND OR THIRD BYTE)
bit description

Bits 6 and 7 signal capitalization. The keys are: 00O=use default
0l=first letter cap, l10=whole word cap, 1ll=all lower case.

1 if there are more attribute bytes, 0 if this is it

1l if a prefix is encoded in the following bits, 0 if a suffix is

Bits 0 through 3 contain the index of either a prefix or suffix,
if there was any. 0000 is an illegal suffix so that if all of bits
1l through 5 are zero, it indicates that no affix is encoded here.

O NWBE LA

REMAINING ATTRIBUTE BYTES

The remaining attribute bytes can take on either of the following
formats. The purpose of these different formats is mainly one of

- 15 -



Text Compression Using Word Tokenization

convenience: Prefixes and suffixes placed into the shorter of the two

formats can be more easily concatenated into a first attribute byte
along with the capitalization attribute.

SHORT FORM

The short form is identical to the encoding of the first attri-
bute byte, with the exception being that the two high bits (previously
used for capitalization), are always set to 0.

LONG FORM

bit description
7 0 if a prefix follows, 1 if a suffix
6

always 1 for a prefix, normally 0 for a suffix, unless the root
of the word was modified to accommodate the suffix, in which
case this is 1.

1 if there is another attribute byte, 0 if there is not
}
} Bits 0 through 4 contain the binary encoded prefix

} or suffix (00000 is legal for both prefixes and suffixes).
}

}

OFHNDWMAEO

- 16 -



Text Compression Using Word Tokenization

- APPENDIX B -
STATISTICAL RESULTS

The following statistics were gathered by a 'C' program running
under UNIX on a MicroVAX I. The short dictionary is composed of the
32 most commonly occuring words in the English language (see [1]).
The long dictionary contains the next 8K most common words. The docu-

ments are all newspaper articles. All sizes given are in bytes, and
the cpu times are in seconds.

size + cpu time required +

+ percentage + +

uncompressed + compressed + compression + compression + decompression +
------------- ettt e et Bl &
15311 + 6619 + 56.8 + 10.1 + 3.9 +
------------- L ettt Tt e ittt s T R S
8675 + 3749 + 56.8 + 6.0 + 2.6 +
------------- e e i et s it £
6214 + 2687 + 56.8 + 4.4 + 1.6 +
------------- e e ekt A s S &
5086 + 2087 + 59.0 + 3.3 + 1.3 +
------------- e ettt e e e 4
1758 + 755 + 57.1 + 1.1 + 0.5 +

The above five files taken together contain 5592 words (since the
dictionaries were not prepared for these documents, not all of these
words were contained in them). They require a total of 24.9 seconds
to compress and 9.9 seconds to decompress. Hence, 225 words/second can
be compressed and 565 words/second decompressed.

- 17 -



Text Compression Using Word Tokenization

The results in the following example were obtained using this paper
itself. These results exemplify the advantages of storing compressed
rather than unformatted manuals online.

+ time
formatted + + formatted +
uncompressed + unformatted + compressed + to format + to decompress
------------- et el e s R Dl TP TR ——
39027 + 33719 + 18032 + 229.7 + 9.5

--———-----————————————-—————_——.—————————-——-----———-——-———-—--———_———-————-

- 18 -



Text Compression Using Word Tokenization

REFERENCES

(1] Francis, W. N., Kucera, H., Computational Analysis of
Present-Day American English, Brown University Press, 1970.

[2] Kelly, E., Stone, P., Computer Recognition of English Word
Senses, North-Holland PublIshgng Company, 1975.

[3] Warriner, John E., Treanor, John H., Laws, Sheila Y., English
Grammar and Composition, Harcourt, Brace & World, Inc., 1969.

- 19 -



